"역학, falling chains"의 두 판 사이의 차이
둘러보기로 이동
검색으로 이동
46번째 줄: | 46번째 줄: | ||
이 경우 아래에 떨어지는 줄이 떨어지고 있는 줄에 주고 있는 힘이 있기 때문에 v의 속력인 작은 질량 부분 <math> \Delta M </math>이 v에서 0이 되므로 | 이 경우 아래에 떨어지는 줄이 떨어지고 있는 줄에 주고 있는 힘이 있기 때문에 v의 속력인 작은 질량 부분 <math> \Delta M </math>이 v에서 0이 되므로 | ||
위 방향으로 힘이 작용하게 된다. 이 힘을 위에서 계산한 바와 같이 <math> \dot{M} v^2 </math>이다. | 위 방향으로 힘이 작용하게 된다. 이 힘을 위에서 계산한 바와 같이 <math> \dot{M} v = ( \rho dx )/dt v = \rho v^2 </math>이다. |
2024년 10월 8일 (화) 16:13 판
Falling chain은 여러가지 버전이 있는데, 강의를 하면서 학생들이 잘 이해 못하는 것 같아 정리해 본다.
먼저 에너지 보존이 되는가은 문제가 있다.
이것은 컨베이어 벨트로 떨어지는 물체에 대해서도 마찬가지다.
먼저 인 물체가 컨베이어 벨트로 떨어져서 속력이 가 된다고 하자.
이때 걸린 시간이 라고 하자.
그렇다면 컨베이어 벨트가 이 물체에 작용한 충격량은 물체의 운동량의 변화량이 되므로
이다.
따라서
이다.
여기서 문제가 생기는데, 컨베이어 벨트는 힘 로 속력 로 물체를 움직이는
것처럼 보이므로 순간 power가 가 된다.
그런데 물체의 운동에너지의 시간 미분은
이다.
그럼 컨베이어 벨트의 일률 중 1/2은 어디로 간 걸까?
그것은 마찰로 손실이 되었다고 할 수 있다. 만약에 마찰이 없다면, 물체가 떨어져도 물체는 계속 그 자리에 있게 된다.
이를 제일 먼저 적용할 수 있는 예를 생각해 보면, 끈이나 체인이 똑바로 서있다가 두르르르 표면으로 떨어져서 정지하는 경우를
생각해 볼 수 있다. 이 경우 처음 체인의 에너지는 (길이 , 선밀도 라고 하자.
의 질량이 높이 에 있으므로
위치에너지는
이다. 마지막 상태는 위치에너지가 0이다.
이 경우도 마찬가지로 에너지의 손실이 존재한다.
이 경우 아래에 떨어지는 줄이 떨어지고 있는 줄에 주고 있는 힘이 있기 때문에 v의 속력인 작은 질량 부분 이 v에서 0이 되므로
위 방향으로 힘이 작용하게 된다. 이 힘을 위에서 계산한 바와 같이 이다.