EPR

주합루 오픈 위키
Jwlee (토론 | 기여)님의 2023년 3월 1일 (수) 19:47 판
둘러보기로 이동 검색으로 이동

EPR 논문을 쉽게 이해할 수 있는 방법이 없나... 생각하다가 그냥 읽기로 했다.

Chapter 1.

먼저 IT IS REAL! 이라는 주장이다.

Planewave function,

Momentum을 재면,

구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \hat{p} \psi = p_0 \psi } 이다.

여기서 EPR의 주장을 한번 생각해 보자. 어떤 물리량을 재는데 상태를 건드리지 않고, 그 물리량을 잴 수 있다면 그 물리량은 REAL이다.


위치를 재면

구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \hat{x} \psi = x_0 \psi }

가 아니다.

따라서 위치는 REAL이 아니다!

They say "When the momentum of a particle is known, its coordinate has no physical reality."

Chapter 2.

두 시스템이 t=0에서 T까지 서로 상호작용을 한다고 하자. 그리고 T이후에는 상호작용이 없다.

A는 I번 시스템에만 작용하는 operator이고, 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle u_n (x_1) }구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle a_n } 의 eigenvector와 eigenvalue를 갖는다고 하자.

구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \Psi (x_1) = \sum_{n} c_n u_n(x_1) }

Reduction of wave packet의 개념

자 그럼 II번 시스템과 함께 기술하려면 어떻게 해야 할까?

구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \Psi (x_1, x_2) = \sum_n \psi_n (x_2) u_n(x_1) } 가 타당할 것으로 보인다.

그럼 이제 이 파동함수에 연산자 를 작용한다고 하자. 어떤 특별한 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle k } 의 상태가 선택되어질 것이고 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle a_k } 의 값이 측정될 것이다. 그때, 바로, 시스템 II의 파동함수는 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \psi_k (x_2) } 가 선택된다.

이번에는 I번 시스템을 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle B } 라는 연산자를 작용한다고 하자. 그러면 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle v_n (x_1) } , 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle b_n } 의 eigenvector와 eigenvalue를 갖는다면, 같은 파동함수 구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \Psi(x_1, x_2) }

구문 분석 실패 (MathML을 사용하되 미지원 시 SVG나 PNG 사용 (최신 브라우저나 접근성 도구에 권장): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \Psi(x_1, x_2) = \sum_n \varphi(x_2) v_n (x_1) } 라고 적어야 한다.